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Inverse Problems of Aggregation Processes 
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The coagulation frequency is the key ingredient in the population balance 
(Smoluchowski) equation of coagulation kinetics. An inverse problem is for- 
mulated to extract the coagulation frequency from transient size distributions 
when these distributions are self-similar. Two numerical examples illustrate the 
procedure. The first demonstrates the inverse problem for the recovery of 
singular coagulation frequencies, while the second shows the procedure when 
self-similarity is approximate. Transient droplet coagulation experiments in a 
turbulent flow field have been performed. The resulting size distributions are 
observed to be self-similar. The inverse problem is used to determine the drop 
coagulation frequency. This frequency shows significant deviation from the 
coagulation frequencies derived from simple models of drop~lrop interactions 
in a turbulent flow field. 

KEY WORDS: Inverse problem; agglomeration kinetics; scaling spectra; 
coagulation frequency. 

1. I N T R O D U C T I O N  

Aggregation is the process by which distinct particles or droplets combine  
physically to form a single unit. The kinetics of irreversible aggregation 

processes are described in the mean f i e ld  approach by the wel l -known 
coagula t ion equa t ion  due to Smoluchowski,  (1) 

On(v, t) 1 fi' 
~t 2 q(v  - v', v',...) n(v  - v', t) n(v',  t)  dr' 

- q ( v , v ' , . . . ) n ( v , t ) n ( v ' , t ) d v '  (1.1) 
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In the above, n(v, t) is the number density of particles of volume v at 
time t and q(v, v',...) is the coagulation frequency of particles of volumes v 
and v', which also depends on other physical parameters represented by the 
dots. Given the coagulation frequency function, the agglomeration equa- 
tion can be employed to predict the evolution of size spectra from any 
initial distribution n(v, 0). The coagulation equation has been a basis for 
understanding the formation of smoke and haze, (2~ growth of polymer 
chains in solution, (3) fractal growth of proteins, (4) gelation phenomena, (5) 
etc. 

The key ingredient of the mean field approach to coagulation is the 
coagulation frequency function q(v, v',...), which depends on the nature of 
the relative motion of particle pairs in the suspending medium. The 
coagulation frequency q(v, v',...) also depends on many physical parameters 
of the system, such as the interfacial tension, turbulence energy dissipation 
in a turbulent flow field, the viscosities of both phases, etc. The frequency 
may even be a functional of the transient size distributions, especially at 
higher particle fractions. 

The agglomeration frequency is usually derived from mechanistic 
models of the relative motion between a pair of particles. A classic example 
is the coagulation frequency of Brownian particles due to Smoluchowski. (1) 
Smoluchowski's model determines the agglomeration frequency by describ- 
ing the relative motion as diffusion. The agglomeration coefficients of 
polymers are presented by Ernst. (3) Such models and frequencies are then 
evaluated based on their ability to describe experimental coagulation data. 

The coagulation frequency function has been hitherto regarded as an 
entity which can be only derived by methods outside the Smotuchowski 
equation framework. Extracting the coagulation frequency from transient 
size distributions can be termed an inverse problem. While the direct 
problem of coagulation kinetics is concerned with the prediction of 
transient cluster size distributions using known agglomeration frequency 
functions, the inverse problem of aggregation is aimed at recovering the 
coagulation frequency function from transient size spectra in situations 
where the frequencies are unknown. The inverse problem formulation is 
particularly useful in situations where reciprocal effects between the motion 
of the particles and the suspending medium or many-body effects make the 
formulation of models of the relative motion difficult. In fact, the frequen- 
cies obtained from the inverse problem may be used to identify the salient 
dynamical features influencing coagulation. 

The direct determination of the coagulation frequency from raw 
transient experimental data by inverting the Smoluchowski equation is 
extremely difficult. However, numerical experiments, (6) theoretical analysis 
of the asymptotic properties of size spectra of different coagulation 
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kernels, (7) as well as empirical evidence (s) suggest that at large coagulation 
times the size spectra may be self-similar. The scaling spectrum is defined 
by(2) 

T ( z )  = n(v, r 02(t), z = v/~(t) 

where f(t) is the average size of the population at time t. Basically, the 
transient number densities at large times can be expressed by a single func- 
tion ~U(z) (similarity distribution) of a scaled size variable z. The inverse 
problem then becomes one of identifying the coagulation frequency func- 
tion from the self-similar distribution. Muralidhar and Ramkrishna(9 ) 
formulated an inverse problem to derive homogeneous coagulation 
frequencies from similarity spectra and subsequently (1~ generalized it to 
accommodate certain nonautonomous, nonhomogeneous kernels which 
also exhibit scaling spectra. 

The objectives of this paper are threefold. First, the earlier formulation 
of the inverse problem is simplified and made more general. Methods to 
diagnose and extract singular frequency functions (for example, Brownian 
coagulation frequency) are presented and illustrated with an example. 
Second, the applicability of the inverse problem to situations of 
approximate scaling behavior is investigated. In this context, the concept of 
approximate similarity and frequencies that can display approximate 
similarity are discussed. Finally, the formulation is used to determine the 
coagulation frequency from experimental scaling size spectra of coalescing 
droplets in a turbulent flow field. This is a situation where the modeling of 
the coagualation frequency based on relative motion is complicated by 
hydrodynamic interactions as well as Coulombic interactions between the 
droplets at small separations. The outline of this paper is as follows: In 
Section 2, similarity, approximate similarity, and the inverse problem 
formulation are presented. Section 3 describes briefly the numerical algo- 
rithms. In Section 4 numerical examples for nonhomogeneous and singular 
agglomeration kernels are described. In Section 5 the inverse problem 
is used to determine the coagulation frequency from experimental size 
distributions of droplets in a turbulent flow field. The salient aspects are 
summarized in Section 6. 

2. S I M I L A R I T Y  S P E C T R A  A N D  T H E  I N V E R S E  P R O B L E M  

The Smoluchowski equation, Eq.(1.1), written in terms of the 
cumulative volume fraction is 

f0 3F(v, t) v dF(v',  t) dF(v", t) 
at v' v" q(v', v",...) (2.1) 
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where the cumulative volume fraction F(v, t) is 

F(v, t)= v'n(v', t) dr' (2.2) 

The following scaling transformation (/) is introduced: 

F(v, t) ~ f ( z ) ,  z = vs(t) (2.3) 

where s(t) is the inverse of the mean particulate size at time t. Frequently 
employed choices for s(t) are 

(a) s(t) Mo(t) Ml(t)  Mz(t) (2.4) 
= Ml( t ) '  (b) s(t) = M2(t ), (c) s(t) = 3//3(t ) 

In the above, Mp(t) is the pth moment of the distribution at time t and is 
given by 

;o Mp(t) = vPn(v, t) dr, p = 0, 1 ..... Mx(t) -= ! 

Not all the above choices for s(t) may yield a similarity distribution. (3) For 
example, the well-studied sum coagulation kernel v + v' does not yield 
similarity with respect to Eq. (2.4a). Of course, choices more general than 
the above are possible, but will not be of interest here. Under the similarity 
transformation (2.3), Eq. (2.1) yields 

S 2 z oo Q Z t' 
- -  z '  z '  ( 2 . 5 )  z f ' ( z )= s'(t) fo df( )f~_z, df(z ' )  z" q s ' s ' " ' }  

where the primes on s and f denote the derivatives of these functions with 
respect to their arguments. 

Further simplification is possible upon analyzing the consequences of 
the similarity criterion. Under conditions where similarity spectra are 
observed, Eq. (2.5) requires that 

Ot \s'(t)  Jo -z, z" q ' s ' " ' J J  = 0 (2.6) 

The above is the most general criterion for similarity behavior. In what 
follows, we restrict ourselves to situations where the density function f ' ( z )  
has at most an order of singularity one at the origin. This leads to the 
conclusion that 

( z' z" "] 
q s-U)' - ~ ' " ' ]  = S(s(t)) b(z', z") (2.7) 
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where S(s(t)) is some function of the reciprocal mean volume at time t and 
the dependence of b(z', z") on other physical parameters is understood. 
Substituting Eq. (2.7) into Eq. (2.5) and requiring similarity yields 

s'(t) s2 ( t )S  X(t)=--am (2.8) 

and 

f~ f~ ~ f'(z") amaf ' (z )= f ' ( z ) ~  b(z ' , z" )dz"  dz' (2.9) 
z' Z 

where a m is the separation constant. 
As an illustration, we consider an important class of coagulation 

kernels that are studied in the literature which are homogeneous functions 
of the cluster sizes. These have the property that 

q(2v, 2v')=2mq(v, v'), 2 > 0  (2.10) 

where m is the degree of homogeneity. These frequencies satisfy Eq. (2.7) 
with S = s  -m and b(z', z" )=q(z ' ,  z"). According to Eq. (2.7), nonhomo- 
geneous agglomeration frequencies can yield scaling spectra only if they 
show explicit dependence on the mean agglomerate size. An example in this 
category is the frequency derived by Wang, (12~ 

where 

e - a ' ( v  + v') + e - b ' ( v  + v') 

q(v, v ' )=c '  (2.11) 
(e a'~/a' + e b'V/b')(e-a'V'/a' + e-b'V'/b ') 

C 
a' = as(t), b' = bs(t), c' = 

s( t )  2 

In this case S =  1 and b(z', z") is given by the function (2.11) with constant 
parameters a, b, and c replacing the corresponding primed parameters. 

Many frequencies may not be homogeneous, with the nonhomogeneity 
arising primarily due to a mass-dependent sticking or reaction probability 
which depends on the details of the collision cross section. Such frequencies 
may display self-similar behavior in an approximate sense. We make the 
following transformation first suggested by Wang and Friedlander(13): 

F(v, t) ~ f ( z ,  t), z =  vs(t) (2.12) 

and letting 

s(O o ~, a 
s - ~ t j t z ,  t) ~ Z ~ z f ( Z  , t) (2.13) 
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for an interval of time then approximate similarity is attained and 
Eqs. (2.7) (2.9) hold in an approximate sense on the time interval. 

Identification of the function S(s(t)) is possible by exploiting proper- 
ties of certain classes of coagulation frequencies. We consider a broad class 
of agglomeration frequencies whose scaling spectra may be self-similar or 
approximately self-similar. Most coagulation frequencies known in the 
literature possess the property 

q . . . . . .  s ( t ) - m h ( z ' , z " ) [ A + p ( z ' , z " , s ) ]  (2.14) 

where h(z', z") is a homogeneous function of degree m and p(z', z", s) is in 
general nonhomogeneous. If p(z', z", s) is not a function of s(t), then the 
agglomeration frequency is a candidate for generating self-similar size dis- 
tributions and if p(z', z", s)~-~(z' ,  z") as s--+ 0, then it is a candidate for 
approximate similarity. Upon substituting this form for the agglomeration 
kernel into Eq. (2.5), we find that 

S(s( t))=s(t)  m 

and Eq. (2.8) yields 

s ' ( t ) S ( t )  m 2 =  _ a  m ( 2 . ] 5 )  

This equation may be integrated to obtain 

s(t)" l = A + a m ( 1 - m )  t, m g : l  

s(t) = A e x p ( - a l  t), m = 1 
(2.16) 

where a m is a separation constant for the interval over which scaling or 
approximate scaling of size spectra is observed. In what follows we will 
restrict ourselves to cases where S(s(t))= s( t ) -" .  

We cast the above in more meaningful terms by considering a typical 
example. The coagulation frequency of Brownian particles when slip is 
important is given by (13) 

Q(1), I ) ' )= (v l / 3 " } - v ' l / 3 ) [ l ) - I / 3 "J -1 ) ' - - l / 3 "J -~ ) (V -  2/3-}-I3'--2/3)] (2.17) 

where Y is a constant. This nonhomogeneous frequency function can be 
cast in the form given by Eq. (2.14) with the identification of 

A = I ,  h ( z , z , ) ~ _ ( z 1 / 3 q _ z , 1 / 3 ) ( z  1/3.+_z, 1/3) 

p(z ' ,  z", s) = ysl/3(z 2/3 _~_ Zt2/3)(Z -- 1/3 _{_ Z; -- 1/3) -- 1 
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As s tends to zero, p(z', z", s) tends to zero also. In other words, the scaling 
frequency behaves like a homogeneous one for vanishing values of s. In this 
case we have a sequence of self-preserving spectra at large times converging 
asymptotically to the spectrum of the Brownian frequency. (13) 

Experimentally observed self-similar behavior will often be approxi- 
mate due to two reasons. First, even in cases where scaling behavior 
is possible, such spectra are only attained asymptotically at large 
times. Second, even homogeneous coagulation kernels can often have non- 
homogeneous second-order correction terms which do not admit a 
similarity transformation of the coagulation equation. 

The coagulation frequency is determined from the knowledge of the 
parameter m and the function b(z', z"). The identification proceeds in two 
stages. First, the parameters m and a m are identified from a fit of s(t) data 
to Eq. (2.16). Subsequently, b(z', z") is obtained from Eq. (2.9). 

3. C O M P U T A T I O N A L  S T R A T E G I E S  

The inverse problem given by Eq. (2.9) is difficult to solve due to two 
reasons. First of all, it is an integral equation of the first kind and is conse- 
quently an ill-posed problem. (14) By this is meant that small uncertainities 
in the da t a f ' ( z )  can introduce large errors in the solution b(z', z"). Second, 
the unknown function is a function of two variables and hence a large 
number of expansion coefficients may be required. The first difficulty is 
overcome by the technique of Tikhonov regularization of ill-posed 
problems. '14~ The latter difficulty may be overcome by choosing an 
appropriate basis set of expansion. (15) 

The technique of regularization is made transparent by casting 
Eq. (2.9) in operator notation. On defining 

f ' ( z ' ) f ' ( z " )  g(z)=amzf ' (z) ,  k(z', z " ) -  (3.1) 
Z t! 

Eq. (2.9) becomes 

;/f) g(z) = dz' dz" k(z', z") b(z', z") (3.2) 
z '  

The above can be succinctly cast as 

Kb = g (3.3)  

where b and g are vectors and K is an integral operator described by 
Eq. (3.2). The idea of regularization is to replace the ill-posed problem by 
the well-posed approximation 

Minimize IIKb- gl[ 12 + 2 IrbXI 2 (3.4) 
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where the subscripts on II indicate different norms for the two vector spaces 
and 2 is small, nonnegative regularization parameter. The first term in 
Eq. (3.4) measures the residual, whereas the second term is the norm of the 
solution with the regularizing parameter acting as the weighting factor. 
Basically this procedure filters off the high-frequency components of the 
solution which tend to be corrupted by experimental noise. As the noise in 
the data increases, the regularizing parameter must be increased to discard 
more frequency components of the solution. In the Tikhonov regularization 
procedure, the regularization parameter 2 is chosen so as to be commen- 
surate with the quality of the data. This is explained in more detail in 
Section 5. 

In order to obtain an adequate finite-dimensional approximation of 
Eq. (3.4), an appropriate Hilbert space must be chosen to expand b(z', z"). 
A computationally useful Hilbert space is {L2(0, ~)  • ~) ;  
x21ule xyZlUle-Y), where I#[ is the order of singularity of the unknown 
function b(z', z"). The Laguerre polynomials may be used to construct the 
basis set for expanding the solution. The Laguerre polynomials are defined 
by(16) 

d(sie ~') 
Li(s)=e s -  i=0,  1 .... 

dsi ' 

The basis is now readily obtained as the tensor product of the functions 
{~bi} defined by 

~)i (X) : X --I~IL i (x) (3.5) 

The unknown function is expressed as a linear combination 

n 1 n - - 1  

b(z', z")= ~ ~ ~o~i(z')(~j(z") (3.6) 
i = 0  j = O  

where e0 are the unknown coefficients to be determined. On letting 

. . . .  

a i p  q = dz' dz" f ' ( z ' ) ~  Op(Z t) ~)q(Z") (3.7) 
g i z' 

and 

gi = zJ '(z i)  am (3.8) 

the minimization problem given by Eq. (3.4) becomes 

Minimize ~, Z (aipqO~pq -- gi )2 q- I~ ~ 2 ~pq~ ( 3 . 9 )  
i= I pq pq vs 
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where r is the number of collocation points chosen on the interval (0, Zmax) 
and 

hu= j x21~'le-x(bi(x) fbj(x)dx=6ij (3.10) 
0 

The symmetry of the agglomeration frequency implies that 

O~pq ~- ~qp (3.11) 

A constrained minimization algorithm can be used to solve Eqs. (3.9) and 
(3.11). 

It remains to identify the singularity of the unknown function b(z' ,  z")  
from the similarity distribution. In this regard, one of the results of 
van Dongen and Ernst (11) can be used. They have shown that the order of 
singularity /~ is related to the behavior of the similarity distribution 5U(z) 
near the origin. Whenever the coagulation frequency function is singular, 
particles of disparate sizes coagulate rapidly and the size spectrum ~ tends 
to be peaked about the mean size. Van Dongen and Ernst (11) have shown 
that for singular homogeneous coagulation frequencies the leading 
behavior of similarity distribution near the origin is given by 

[ Kz 
f ' ( z )  ~ D exp as z ~ 0 (3.12) 

z I~tl amJ 

where K and D can be considered constants to be determined when fitting 
gt(z) for small values of z. While the form is strictly valid for homogeneous 
kernels, it is expected to be a good approximation if the nonhomogeneous 
corrections to the frequency are small. 

4. N U M E R I C A L  E X A M P L E S  

In this section, we present two numerical examples to illustrate the 
inverse problem procedure. The examples serve to test the applicability of 
the formulation under fairly severe conditions. The first situation con- 
sidered is one where the coagulation frequency is singular. In the second 
example, we investigate the efficacy of the approach to realistic cases where 
the scaling behavior is only approximate. As mentioned earlier, strict 
dynamic scaling is an idealization and may be valid only when the short- 
range interactions between the particles negligibly influence the reaction 
cross section. 

The numerical experiment is as follows. First, the discretized version of 
the coagulation equation (7) is solved for a known agglomeration frequency 
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and the scaling spectrum is obtained. This scaling spectrum is now used to 
recover the frequency from the inverse problem. The closeness of the 
extracted function to the actual is measured by the relative error defined by 

where 

Ilqa~tu~l- qi . . . . . .  [I 
erel ~-- Ilqaotualll 

]lfll = ( f~ f~ f 2(z', z") dz' dz") t/2 

The limits of integration reflect the fact that almost all the particles have 
dimensionless size in this range. 

4.1. Singular Agglomeration Frequencies 

For many physical situations, it is known that the agglomeration 
frequency q(v, v') is singular along the v and v' axes. For example, the 
Brownian coagulation frequency given by 

q(v, v') = (v 1/3 + vtl/3)(D 1/3 + V'-- 1/3) (4.1) 

has such singularities along the v and v' axes. In such cases the similarity 
spectraf'(z)/z vanish at the origin as discussed in Section 2. Physically, this 
is a consequence of the fact that particles of disparate sizes disappear 
quickly from the population. Experimental self-similar spectra can be used 
to identify the order of singularity via Eq. (3.12). For illustrative purposes, 
we consider the nonautonomous and nonhomogeneous frequency function 

q(V,V,)=(O1/3_t_I),13)[- v 1/3juDzl/3_~)s(t)-I/3(U 2/3..~_ v, 2/3)] (4.2) 

This is the case of Brownian coagulation with slip where the mean free 
path is made time dependent. This frequency is a candidate for self-similar 
behavior, since p(z, z', s) = p(z, z'). The scaling spectrum for this frequency 
function obtained by numerical solution of a discretized version of Eq. ( 1.1 ) 
is shown in Fig. 1. The parameters m and am were determined by a least 
squares fit of Eq. (2.16). The value of m was determined to be 0.00. Since 
the similarity density 7t(z) approaches zero as z approaches zero, the 
unknown b(z', z") is singular along both axes. The degree of singularity I#l, 
determined by fitting the scaling spectrum near the origin to Eq. (3.12), is 
0.658, in comparison to the actual value of 2/3. The calculated degree of 
singularity is used to construct a set of orthogonal polynomials as outlined 
in Section 3. Three basis functions are used to expand the unknown 
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spectrum for the agglomeration frequency given by Eq. (4.2). 

function; therefore, only  six unique coefficients are determined. Figure 2 
compares  the actual funct ion with the funct ion determined via the inverse 
problem. In this case the regularization parameter 2 is set to be 0.1 and the 
relative error is 2.16%. The inverse problem result mimics  the actual. 

4.2. A p p r o x i m a t e  S imi la r i ty  

We consider the coalescence  frequency of  droplets in a turbulent f low 
field (xT) 

q(v, v') = k(v 1/3 4- Vii~3) 7/3 ~c (4.3) 

where 
1 - exp( - ~bfl~ 4) 

r / c -  1 _ e x p ( _ / ~ { 4 )  (4.4) 

In Eq. (4.4), ~ is the d imensionless  harmonic  mean  radius of  the pair of  
droplets,  while ~b (0 < ~b < 1) and ~ are parameters.  Then  

= s-7/9(zl/3 + z' 1/3)7/3 1 -- exp[  -~s--4/3Z4/3z'g/3/(Z1/3 -1- 2''1/3) 4 ] 
1 - exp[  - ~ s  4/3Z4/3Zt4/3/(Z 1/3 dr- Z'I/3) 4] 
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Compar ing  this with the form given by Eq. (2.14), it is evident that A = 0, 
while the n o n h o m o g e n e o u s  part is given by 

1 - e x p [  -r  + z'U3) 4 ] 
p(z', z", s)  - 1 - exp[  --~S-4/3Z4/3Z'4/3/(Z 1/3 J- Z ' 1 / 3 )  4 ] (4.5) 

The n o n h o m o g e n e o u s  part p(z', z", s) approaches  unity as s becomes  much  
smaller than unity and hence approximate  scaling behavior  is possible. The 

Q, 
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The frequency function obtained from the inverse problem compared with the actual 
for Eq. (4.2). (a) Actual, (b) inverse problem result. 
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Approximate scaling spectrum for the agglomeration frequency given by Eq, (4.3). 

approximate scaling spectrum for small s is shown in Fig. 3. The values of 
m and a m are again determined from a fit of the reciprocal scaling size s ( t )  

to Eq. (2.16). The parameter m is estimated to be 0.778, which is the actual 
value. With this spectrum, the inverse problem yields tile frequency shown 
in Fig. 4. The actual function (over the same interval of s) is also displayed 
in the same figure. The regularizing parameter was set equal to 10 -3o and 
the relative error is 4.65%. The extracted frequency function mimics the 
actual. 

5. C O A G U L A T I O N  F R E Q U E N C I E S  F R O M  E X P E R I M E N T  

In this section experimental similarity distributions will be subjected 
to the inverse problem. As the actual frequency is unknown in this case, 
the veracity of the frequency obtained from the inverse problem can be 
established by testing its ability to predict the transient size distributions of 
the experiment. The physical system consists of neutrally bouyant organic 
phase droplets in a turbulent flow field. The coalescence frequency of 
droplets is difficult to derive from mechanistic models because the relative 
motion at small separations is influenced by hydrodynamic interaction and 
electrostatic and dispersion forces as well as droplet deformation. These 
difficulties make the inverse problem particularly useful. 

The particular system chosen is a 5% dispersion of a neutrally 
buoyant mixture of benzene-carbon tetrachloride in water. The experiment 
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Fig. 4. 

(a) r. ~ 9~7~9 ~o 99 ~ i 

s 8 88 770 ~ 
2 0 ~ 

2' 

(b) 

,, 7 09 

N 

23 

2 7 ) 

2 0 "L 

2 '  

The frequency function obtained from the inverse problem compared with the actual 
for Eq. (4.3). (a) Actual, (b) inverse problem result. 

was conducted in a 2-liter stirred tank. A multitude of small drops was 
created at a high impeller stirring speed of 800 rpm. Coalescing transients 
were observed after a sudden reduction of the impeller speed to 200 rpm. 
Droplet fragmentation effects were negligible because the final turbulence 
intensity was insufficient to break the small drops. The size distribution was 
measured periodically by withdrawing small samples, immobilizing the 
drops 'with a surfactant, and photographing the samples. More experimen- 
tal details are available elsewhere. ~ 
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Two experiments were performed sequentially. Initially the benzene- 
carbon tetrachloride was added to the water and was prestirred at 800 rpm 
for 1 hour. The impeller was then suddenly reduced to 200 rpm and a 
transient coalescence experiment was performed. After 3 hours, the impeller 
speed was again increased to 800rpm for 1 hour. Another coalescence 
experiment was performed following a reduction of the impeller speed to 
200rpm. The initial conditions ( t = 0 )  for the two experiments are not 
identical because the histories of the two initial conditions were not identi- 
cal. Therefore, the transient size distributions did not evolve identically. In 
spite of this, the transient size distributions of both experiments evolve to 
the same similarity spectrum quickly. The reciprocal mean size used is 
given by Eq. (2.4b). The functions f'(z) and f(z)  are shown in Figs. 5 
and 6. To facilitate solution of Eq. (2.9) for the function b(z', z"), the 
density function f ' ( z )  is fit with a function 

f'(z) : 0.3098z- 0.0780 exp( - 0.7694z) 

+ 11.0177z 1"9~ exp( - 3.3840z) (5.1) 

This function satisfies the constraints ~ f  f ' ( z ) d z :  1 and ~ zf'(z)dz : 1. 
The second constraint arises as a consequence of using the scaling volume 

N 
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H 
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[2] !5 mlrl i 

30 rain I 

a L+5 m!n ! 

Y 120 mln 1 

X 15 rain 

30 mira 2 

§ 60 mlo 

:20 mln 2 

< 
8 3 

Fig. 5. Experimental similarity densities, f'(z). The solid line represents Eq. (5.1). 
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Fig. 6. Experimental cumulative volume fraction f(z) data plotted versus z. The solid line 
represents Eq. (5.1). 

given by Eq. (2.4b). The scaling spectrum given by Eq. (5.1) along with 
Eq. (2.16) can be used to predict the transient volume fractions and the 
cumulative volume fractions. The other two parameters required for deter- 
mining the coagulation frequency (re, am) were determined by fitting 
Eq. (2.16), assuming that m and a m are the same for both experiments. The 
only difference between the two experiments is a different integration 
constant due to the different initial conditions. The parameter m was 
determined to be 0.44 with a m equal to 2.48(10 -4) ]~l 1 - m  min -1. 

Since ( f ' ( z ) / z ) (~ ( z ) )  is singular at the origin, b(z, z') is not singular 
along the axes. Therefore, no estimate of the degree of singularity is needed 
and the Laguerre polynomials are the basis functions. The fitted spectrum 
(5.1) is used as the input to the inverse problem scheme [Eq. (2.9)]. The 
resulting b(z, z") is shown in Fig. 7. Four basis functions are used and thus 
10 independent coefficients are determined. This b(z, z') along with the 
parameters m and a m determine q(v, v',...) completely. The frequency 
q(v', v") can now be used to predict transient size distributions by Eq. (1.1). 

In order to pick a proper regularization parameter, an estimate of the 
experimental uncertainty in F(v, t) has to be made. If it is assumed that the 
actual f ( z )  is the same for all eight transients, a standard deviation in 
F(v, t) can be calculated. For these data the standard deviation in F(v, t) 
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Fig. 7. 
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The unknown function b(z',z")/am determined from the inverse problem for the 
experimental f'(z). 

was 0.035. In accordance with Tikhonov's regularization principle, (14) the 
regularization parameter was set to be the maximum 2 for which the 
derived coalescence frequency predicts the experimental transients or the 
similarity-predicted transients to within the estimated uncertainty. The 
determined regularization parameter is 0.1. 

Figures 8 and 9 show the transients predicted by the coalescence fre- 
quency along with the similarity-predicted transients from Eqs. (2.16) and 
(5.1) compared with the experimental data. In both sets of data, the initial 
condition input to Eq. (1.1) is the number density predicted by Eqs. (5.1) 
and (2.16) at t =  15 rain. For both experiments the transients predicted 
from the similarity distribution, via Eq. (2.3), and the transients predicted 
by Eq. (1.1) with the obtained frequency match well. The differences 
between the predictions and the data arise due to two reasons. The first is 
the inadequacies inherent in the fitting of Eq. (2.16). For example, in 
experiment 1 the predicted value of s(t) and the experimental value at 
t = 45 rain differ by 25% (see Fig. 10). Therefore, the data and predictions 
show deviations for this time. The second is the experimental deviation of 
the data from the similarity distribution given by Eq. (5.1). For example, in 
experiment 2 the 120-min size distribution has the largest deviation from 
the similarity distribution (see Fig. 6). Thus, the data and predictions differ. 

The agglomeration frequency predicted by the inverse problem shows 
significant deviation from previous models for the frequency. The 
coalescence frequency for drops in a turbulent flow field has been assumed 
previously (19) to be of the form of Eq. (4.3), where tic has frequently been 
supposed to be a constant. The results from the inverse problem do not 

822/61/3-4-23 
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Fig. 8. Transient distributions of experiment 1. The dashed lines represent the predictions 
from the similarity distribution, Eq. (5.1), making use of the fit of Eq. (2.16). The solid 
lines represent the predictions of Eq. (1.1). (a) Transient volume fractions vn(v, t) in /~l-,1. 
(b) transient cumulative volume fractions F(v, t). 



inverse Problems of Aggregation Processes 861 

Fig. 9, Transient distributions of experiment 2. The dashed lines represent the predictions 
from the similarity distribution, Eq. (5.1), making use of the fit of Eq. (2.16). The solid lines 
represent the predictions of Eq. (1.1). (a) Transient volume fractions vn(v, t ) i n  /l1-1. (b) 
Transient cumulative volume fractions F(v, t), 
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Fig. 10. 
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Evolution of the reciprocal mean size s(t) for both experiments. The solid line 
represents the best fit of Eq. (2.16). 

indicate this. Equation(4.5) with constant q, would require the rn 
parameter to be 7/9, while the s(t) evolution for these sets of data predicts 
m = 0.44, a considerable deviation. Also, if t/c were a constant, then the 
coalescence frequency would be an increasing function of drop size for all 
drops. The inverse problem results show that, while the frequency increases 
for most drops, the coalescence frequency of greatly disparate-sized drops 
actually decreases. We are currently investigating the physical origins for 
these deviations. 

6. S U M M A R Y  A N D  C O N C L U S I O N S  

The description of aggregation-induced growth processes in the mean 
field approach requires the knowledge of the bivariate agglomeration 
frequency function. Such frequency functions have hitherto been regarded 
as entities that can be obtained by means outside the coagulation equation 
framework. Frequently, clustering frequencies are obtained by mechanistic 
models of the relative motion of the agglomerating pair. The inverse 
problem formulated in this paper shows that, alternatively, coagulation 
frequencies may be extracted from self-similar size spectra in the mean 
field framework. The inverse problem approach is particularly useful in 
situations where the dynamics of the collision process is complicated by 
short-range forces or many-body effects. 
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An integral equat ion is derived to extract the coagulat ion frequency 
function from dynamic  scaling spectra. A suitable basis set for expanding 
the unknown  frequency function can be obtained from the properties of the 
similarity spectrum itself. The approach  is exemplified by subjecting scaling 
spectra of known agglomerat ion frequencies to the inverse problem. 

The inverse problem is used to extract the agglomerat ion frequency of 
droplets in a turbulent flow field from an experimental self-similar distribu- 
tion. The extracted frequency shows significant deviation from previous 
models for the agglomerat ion frequency in a turbulent flow field. 

The numerical experiments as well as the test on experimental data  
show that  the inverse problem can be an effective tool for understanding 
the dynamics of various aggregation processes. 
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